Exercise 1

Container Service

Video link : <u>https://youtu.be/yfTfEKJtxbA</u>

Container Service – uploading files and data

- Please download the zip file. Download link : <u>https://reurl.cc/V54QeA</u>
- Unzip the file and upload the folder to the server with FTP tool. (Upload and put MNIST folder in /workdir directory.)
- The files in Mnist folder :
 - Pytorch_Mnist.py
 - Tensorflow_Mnist.py
 - TFKeras_Mnist.ipynb
 - MNIST_data (folder)

1. Create Container Site and select Tensorflow2.0 image.

Create Container Site	
Solution* Tensorflow2_20.08-tf2-py3	•
	Cancel

2. The setup of creating Container Site

(1) Please enter the information.

(2) Submit to complete the setup.

Description	e.g. Keras Mnist Training	3 Overview	
Password	must contain at least one letter	Basic Info Name Description	duncanwang-1633311488986
Image	harbor.gemini.com:30003/tensorflow/tensorflow2:20.08 -tf2-py3	default password	password
Flavor	4CPU_30GRAM_1GPU (CPU: 4 Core, Memory: 30000 MB, GPU: 1 Core)	Image Flavor	tt2-py3 4CPU_30GRAM_0GPU (CPU: 4 Core, Memory: 30000 MB, GPU: 0 Core)

3. Switch to Service Info and click on the web link.

4. Enter the password to access Jupyter Notebook.

5. Click on the "username" folder and then enter into /workdir directory.

0 - 1		□ 0 - I duncanwang / workdir / Mnist
docker-examples		
		MNIST_data
		Pytorch_Mnist.py
rvidia-examples		Ensorflow_Mnist.py
README.md		FKeras Mnist.ipvnb

6. Click on "TFKeras_Mnist.ipynb" to open the file and then run the code.

In [1]: #import tensorflow import tensorflow as tf In [2]: mnist = tf.keras.datasets.mnist (x train, y train), (x test, y test) = mnist.load data() x train. x test = x train / 255.0. x test / 255.0 print(len(x train)) print(x train[0].shape) Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 11493376/11490434 [-----] - 0s 0us/step 60000 (28, 28)In [6]: model = tf.keras.models.Sequential([tf.keras.layers.Flatten(input shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.lavers.Dense(10, activation='softmax') 1) # model每層定義好後需要經過compile model.compile(optimizer='adam', loss='sparse categorical crossentropy', metrics=['accuracy']) model.summarv() Model: "sequential 2" Layer (type) Output Shape Param # flatten 2 (Flatten) (None, 784) ø dense 4 (Dense) (None, 128) 100480

Two ways to run code in terminal (command line):

- Use SSH to connect to the container.
- Use terminal in Jupyter Notebook.

• Use SSH to connect to the container.

1. Create Container Site and select Tensorflow1.0 image.

Create Container Site	
Solution * Tensorflow_19.10-py3	•
	Cancel

• Use SSH to connect to the container.

2. The setup of creating Container Site

(1) Please enter the information.

Description	e.g. Mnist Training
Password	must contain at least one letter
Image	harbor.gemini.com:30003/tensorflow/tensorflow:19. 10-py3
Flavor	4CPU_30GRAM_1GPU (CPU: 4 Core, Memory: 30000 MB, GPU: 1 Core)

(2) Submit to complete the setup.

Overview	
Name	duncanwang-1633313030006
Description	
password	password
	harbor.gemini.com:30003/tensorflow/tensorflow:19.10-
Image	руЗ
	4CPU_30GRAM_1GPU (CPU: 4 Core, Memory: 30000
Flavor	MB, GPU: 1 Core)

- Use SSH to connect to the container.
- 3. Switch to Service Info and the IP and port number for SSH connection can be seen.

Service Info	Site Parameter		
Public IP 140.138.175.9:313 User duncanwang Created Time 2021-10-04 13	36 (tensorboarc <mark>), 140.138.17</mark> 3:17:44	75.9:32101 (ssh),	40.138.175.9:32601 (web)

• Use SSH to connect to the container.

4. SSH tools - Enter IP and port number for connection.

-	建立新連線只要打入主機並選好通訊協定即可
	主機名稱或 IP 位址(N) Port 140.138.175.9 √ 32101
	○ Telnet (BBS)
	使用界面 ☑ 選單列(M) □ PuTTY模式 □ English UI
2	PieTTY Information 無符合的連線記錄,將直接連線到: 140.138.175.9

連線(O)

取消(C

關於(A)

(PieTTY)

(SSH Client command used on MacOS or Linux)

• Use SSH to connect to the container.

5. Log in as root and enter the password.

• Use SSH to connect to the container

6. After login successfully, enter into /workdir directory. command : cd /nfs_vol01/"username folder"/workdir

root@lafrdtduncanwang-1633325250777-spdtl:/nfs_vol01/duncanwang/workdir - C X
root@lafrdtduncanwang-1633325250777-spdtl:/nfs_vol01/duncanwang/workdir ^
root@lafrdtduncanwang-1633325250777-spdtl:/nfs_vol01/duncanwang/workdir#_ls
Mnist

- Use SSH to connect to the container
- 7. Enter into Mnist folder and then execute the python code. command : python3 Tensorflow_Mnist.py

Proot@lafrdtduncanwang-1633325250777-spdtl: /nfs_vol01/duncanwang/workdir/Mnist

root@lafrdtduncanwang-1633325250777-spdtl:/nfs_vol01/duncanwang/workdir# cd Mnist root@lafrdtduncanwang-1633325250777-spdtl:/nfs_vol01/duncanwang/workdir/Mnist# ls MNIST_data Pytorch_Mnist.py TFKeras_Mnist.ipynb Tensorflow_Mnist.py root@lafrdtduncanwang-1633325250777-spdtl:/nfs_vol01/duncanwang/workdir/Mnist# python3 Tensorflow Mnist.py

• Use SSH to connect to the container.

8. The result of the execution shows the decline of loss and the improvement

of accuracy after 100 epochs of training.

Train	Epoch:	90	Loss=	1.6719	Accuracy=	0.97
Train	Epoch:	91	Loss=	1.6358	Accuracy=	0.9698
Train	Epoch:	92	Loss=	1.5792	Accuracy=	0.9696
Train	Epoch:	93	Loss=	1.5632	Accuracy=	0.9698
Train	Epoch:	94	Loss=	1.6421	Accuracy=	0.9702
Train	Epoch:	95	Loss=	1.5896	Accuracy=	0.9688
Train	Epoch:	96	Loss=	1.5296	Accuracy=	0.9702
Train	Epoch:	97	Loss=	1.5179	Accuracy=	0.9728
Train	Epoch:	98	Loss=	1.6063	Accuracy=	0.9704
Train	Epoch:	99	Loss=	1.6737	Accuracy=	0.9694
Train	Epoch:	10	0 Loss=	= 1.5871	Accuracy=	= 0.9718
Final	Accura	зу:	0.9699	9		
root@	lafrdtdu	inca	anwang-	-16333252	250777-spdt	l:/nfs_vol01/duncanwang/workdir/Mnist#

- Use Terminal in Jupyter Notebook.
- 1. Switch to Service Info and click on the web link.

Public IP 140.138.175.9:31336 (tensorboard), User duncanwang	140.138.175.9:32101 (ssh , 140.138.175.9:32601 (web)

- Use Terminal in Jupyter Notebook.
- 2. Click on "New" button and select "Terminal".

💭 Jupyter	Quit Logout
Files Running Clusters	
Select items to perform actions on them.	Upload New - 2
□ 0 🗣 🖿 / Name �	Notebook:
Codecker-examples	Other:
🗋 🗅 duncanwang	Text File
Cinvidia-examples	Folder
□ 🖉 README.md	Terminal kB

• Use Terminal in Jupyter Notebook.

3. Run "Tensorflow_Mnist.py" in /workdir directory. command : cd /nfs_vol01/ "username folder"/workdir/ command : python3 Tensorflow_Mnist.py

duncanwang@lafrdtduncanwang-1633325250777-spdtl:~/workdir\$ ls
Mnist
duncanwang@lafrdtduncanwang-1633325250777-spdtl:~/workdir\$ cd Mnist
duncanwang@lafrdtduncanwang-1633325250777-spdtl:~/workdir/Mnist; python3 Tensorflow_Mnist.py

• Use Terminal in Jupyter Notebook.

4. Same as using SSH connection, the result of execution can be seen in terminal.

💭 Jupyter		Logout	
rary libcublas.so.10		▲	
Train Epoch: 01 Loss= 7.5230	Accuracy= 0.8734		
Train Epoch: 02 Loss= 4.8690	Accuracy= 0.9042		
Train Epoch: 03 Loss= 4.0796	Accuracy= 0.9112		
Train Epoch: 04 Loss= 3.2345	Accuracy= 0.9236		
Train Epoch: 05 Loss= 2.8889	Accuracy= 0.9322		
Train Epoch: 06 Loss= 2.6569	Accuracy= 0.9346		
Train Epoch: 07 Loss= 2.2852	Accuracy= 0.9376		
Train Epoch: 08 Loss= 2.1612	Accuracy= 0.9414		
Train Epoch: 09 Loss= 2.0701	Accuracy= 0.9436		
Train Epoch: 10 Loss= 1.9700	Accuracy= 0.9472		
Train Epoch: 11 Loss= 1.9423	Accuracy= 0.9436		
Train Epoch: 12 Loss= 1.8761	Accuracy= 0.9502		

Container Service – deleting container site

• After finishing running the code, please delete the container site to release the resources(GPU).

COMPUTING > Container > Container Service					Create	Container Site
- C選擇:1筆						
	Name	Status	Solution	Created Time	User	Delete
		Ready	Tensorflow2_20.08-tf2-py3	2021-10-12 19:20:16	duncanwang	
				Number of Rows	s: 25 ▼ 1-1 of 1	< >

